
Public

SMART CONTRACT AUDIT REPORT

for

Monroe Protocol

Prepared By: Xiaomi Huang

PeckShield
March 4, 2024

1/21 PeckShield Audit Report #: 2024-084

contact@peckshield.com

Public

Document Properties

Client GoodEntry
Title Smart Contract Audit Report
Target Monroe Protocol
Version 1.0
Author Xuxian Jiang
Auditors Jason Shen, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 March 4, 2024 Xuxian Jiang Final Release
1.0-rc February 29, 2024 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2024-084

Public

Contents

1 Introduction 4
1.1 About Monroe . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Revisited HealthRate Calculation in BaseVault . 11
3.2 Timely And Accurate Income Collection in BaseVault 12
3.3 Incorrect Deposit Accounting in EmergencyPool . 14
3.4 Accommodation of Non-ERC20-Compliant Tokens 15
3.5 Trust Issue of Admin Keys . 17

4 Conclusion 19

References 20

3/21 PeckShield Audit Report #: 2024-084

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Monroe protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Monroe

Monroe is a new DeFi primitive built on realising the full potential of liquid staking tokens (LSTs)
across all EVM compatible chains. It achieves this by enabling the creation of stablecoins from LSTs in
a fully decentralized way. The protocol makes incremental innovations on the back of giants such as
Liquity, Lybra and Prisma. The envisioned outcome is that these stablecoins will be able to maintain
its peg without significant price variance in different market conditions. The basic information of the
audited protocol is as follows:

Table 1.1: Basic Information of Monroe Protocol

Item Description
Target Monroe Protocol
Type EVM Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report March 4, 2024

In the following, we show the Git repositories of reviewed files and the commit hash values used
in this audit. Note that the Monroe protocol assumes a trusted price oracle with timely market price
feeds for supported assets and the oracle itself is not part of this audit.

4/21 PeckShield Audit Report #: 2024-084

Public

• https://github.com/MonroeProtocol/contracts.git (fe5b79a)

And these are the commit IDs after all fixes for the issues found in the audit have been checked
in:

• https://github.com/MonroeProtocol/contracts.git (bf902c4)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/21 PeckShield Audit Report #: 2024-084

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/21 PeckShield Audit Report #: 2024-084

Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/21 PeckShield Audit Report #: 2024-084

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/21 PeckShield Audit Report #: 2024-084

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Monroe implementation. During the first phase of
our audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logic, examine
system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 3

Low 2

Informational 0

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/21 PeckShield Audit Report #: 2024-084

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 3 medium-severity
vulnerabilities and 2 low-severity vulnerabilities.

Table 2.1: Key Monroe Protocol Audit Findings

ID Severity Title Category Status
PVE-001 Medium Revisited Health Factor Calculation in Ba-

seVault
Business Logic Fixed

PVE-002 Medium Timely And Accurate Income Collection in
BaseVault

Time and State Fixed

PVE-003 Low Incorrect Deposit Accounting in Emergen-
cyPool

Business Logic Fixed

PVE-004 Low Accommodation of Non-ERC20-
Compliant Tokens

Coding Practices Fixed

PVE-005 Medium Trust Issue of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/21 PeckShield Audit Report #: 2024-084

Public

3 | Detailed Results

3.1 Revisited HealthRate Calculation in BaseVault

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: BaseVault

• Category: Business Logic [7]

• CWE subcategory: CWE-837 [4]

Description

In the Monroe protocol, there is a core BaseVault contract that underpins the implementation of various
vaults by recording user collateral and debt. While examining the associated health factor calculation
from user collateral and debt, we notice current approach needs to take into account the decimals
of underlying collateral and debt.

To elaborate, we show below the related getHealthFactor() routine. It has a rather straightforward
logic in computing a user’s health factor based on the following formula, i.e., collateraValue * 100

/ debtValue (line 242). However, the collateraValue calculation is computed as balanceOf(user)*

latestPrice(), which needs to be revised as balanceOf(user)* latestPrice()/ 2**IERC20Upgradeable(

collateralAsset()).decimals(). Similarly, the debt vaule needs to be revised as _debtBalance * ISynth

(synth).getPrice()/ 2**ISynth(synth).decimals(). And the final health factor can then be computed
as hf = 100 * balanceOf(user)* latestPrice()* 2**ISynth(synth).decimals()/ _debtBalance / ISynth

(synth).getPrice()/ 2**IERC20Upgradeable(collateralAsset()).decimals().

240 function getHealthFactor(address user) public view returns (uint hf){
241 uint _debtBalance = debtOf(user);
242 if (_debtBalance > 0) hf = 100 * balanceOf(user) * latestPrice () / _debtBalance /

ISynth(synth).getPrice ();
243 else hf = type(uint).max;
244 }

Listing 3.1: BaseVault::getHealthFactor()

11/21 PeckShield Audit Report #: 2024-084

Public

Recommendation Revisit the above routine to properly the user’s health factor. Note
the same issue also affects other routines, including _liquidateCollateral(), emergencyRepay(), and
rigidRedemption().

Status The issue has been addressed in the following commits: 0d62223, 599c659, and bf902c4.

3.2 Timely And Accurate Income Collection in BaseVault

• ID: PVE-002

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: BaseVault

• Category: Time and State [8]

• CWE subcategory: CWE-682 [3]

Description

As mentioned in Section 3.1, the Monroe protocol has a core BaseVault contract that underpins the
implementation of various vaults. Each vault may have its income that needs to be properly collected
for overall collateral and index adjustment. While analyzing the income collection, we notice the
income needs to timely and accurately collected and distributed.

In the folowing, we examine the BaseVault contract and report an issue in emergencyRepay() that
does not timely collect the income. Specifically, this emergencyRepay() routine allows to repay the
debt in the emergency pool and get respective collateral in return. However, the logic needs to invoke
checkIncome() before making any debt payment.

198 function emergencyRepay(uint debtAmount) external {
199 uint repaidValue = debtAmount * ISynth(synth).getPrice ();
200 uint clawedAmount = repaidValue * 108 / 100 / latestPrice ();
201 ISynth(synth).burn(msg.sender , debtAmount);
202 decreaseDebt(emergencyPool , debtAmount);
203 IERC20Upgradeable(collateralAsset ()).safeTransfer(msg.sender , clawedAmount);
204 decreaseCollateral(emergencyPool , clawedAmount);
205 _totalDepositedCollateral -= clawedAmount;
206
207 emit RepayEmergencyDebt(debtAmount , clawedAmount);
208 }

Listing 3.2: BaseVault::emergencyRepay()

In addition, the derived RebaseCollateralVault contract from BaseVault has a concrete checkIncome

() implementation. Our analysis shows its implementation can be improved. Specifically, the internal
state epShare records the emergency pool share of new income that will be credited to emergencyPool

12/21 PeckShield Audit Report #: 2024-084

https://github.com/MonroeProtocol/contracts/commit/0d62223
https://github.com/MonroeProtocol/contracts/commit/599c659
https://github.com/MonroeProtocol/contracts/commit/bf902c4

Public

as a new deposit into the vault. With that, there is a need to update _totalDepositedCollateral as fol-
lows: _totalDepositedCollateral += epShare (line 24). Similarly, another derived RebaseCollateralVault

contract shares the same issue.

18 function checkIncome () public override returns (uint income){
19 uint actualBal = ERC20(collateralAsset ()).balanceOf(address(this));
20 if (actualBal > _totalDepositedCollateral){
21 income = actualBal - _totalDepositedCollateral;
22 if (balanceOf(emergencyPool) > 0){
23 uint emergencyPoolShareTarget = controller.emergencyPoolShare ();
24 uint epShare = income * emergencyPoolShareTarget * 15 / 1000;
25 increaseCollateral(emergencyPool , epShare);
26 income -= epShare;
27 }
28 // part of the income distributed out (to treasury and savings)
29 income -= _distributeIncome(income);
30 /*
31 Remaining income is given to distributors thru rebase (increase liquidityIndex)
32 totalBalances * liquidityIndex = _totalDepositedCollateral
33 new_totalDepositedCollateral = old_totalDepositedCollateral + income
34
35 since balances dont change:
36 newLiquidityIndex / new_totalDepositedCollateral = old_liquidityIndex /

old_totalDepositedCollateral
37 */
38 liquidityIndex = (_totalDepositedCollateral + income) * liquidityIndex /

_totalDepositedCollateral;
39 // sanity check (cant require or error would brick the vault):

_totalDepositedCollateral + income = ERC20(collateralAsset ()).balanceOf(
address(this))

40 _totalDepositedCollateral = ERC20(collateralAsset ()).balanceOf(address(this));
41 emit CollectIncome(income);
42 }
43 }

Listing 3.3: RebaseCollateralVault::checkIncome()

Recommendation Revise the above-mentioned routines to timely and properly update new
income.

Status The issue has been addressed in the following commits: 94bf1f9 and bf902c4.

13/21 PeckShield Audit Report #: 2024-084

https://github.com/MonroeProtocol/contracts/commit/94bf1f9
https://github.com/MonroeProtocol/contracts/commit/bf902c4

Public

3.3 Incorrect Deposit Accounting in EmergencyPool

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: EmergencyPool

• Category: Business Logic [7]

• CWE subcategory: CWE-837 [4]

Description

The Monroe protocol has the notion of EmergencyPool that keeps debt from emergency liquidation.
This EmergencyPool contract is implemented as an ERC4626 vault with a standard API for tokenized
yield-bearing vaults, offering basic functionality for depositing, withdrawing tokens, and reading
balances. In the process of examining the related deposit logic, we notice the implementation makes
an extension and that extension can be improved.

To elaborate, we show below the related code snippet of the _deposit() routine. The purpose here
is to deposits assets of underlying tokens into the vault and grants ownership of shares to receiver.
The EmergencyPool contract extends the logic by also keeping track of the depositTime of caller. In
fact, the depositTime state should be about the receiver, not msg.sender (line 43).

40 /// @notice Forward assets to collateral vault after deposit
41 function _deposit(address caller , address receiver , uint256 assets , uint256 shares)

internal override {
42 super._deposit(caller , receiver , assets , shares);
43 depositTime[msg.sender] = block.timestamp;
44 IERC20(asset ()).approve(collateralVault , assets);
45 IBaseVault(collateralVault).depositAndMint(assets , 0);
46 }

Listing 3.4: EmergencyPool::_deposit()

Moreover, the depositTime state is used to detect early withdrawals. An early withdrawal situation
may charge 0.1% fee. However, this detection can be easily bypassed as the share can be transferred
to a new fresh account to perform the actual withdrawal.

32 /// @notice Withdraw assets from collateral vault before transfer and apply 0.1%
sniping penalty

33 function _withdraw(address caller , address receiver , address owner , uint256 assets ,
uint256 shares) internal override {

34 IBaseVault(collateralVault).withdrawAndBurn(assets , 0);
35 if (block.timestamp < depositTime[owner] + 1 days) assets = assets * 999 / 1000;
36 super._withdraw(caller , receiver , owner , assets , shares);
37 }

Listing 3.5: EmergencyPool::_withdraw()

14/21 PeckShield Audit Report #: 2024-084

Public

Recommendation Revise the above routine by properly keeping track of the depositTime state
and reliably charge the early withdrawal fee.

Status The issue has been addressed in the following commits: d03fdf4 and b020f1c.

3.4 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [6]

• CWE subcategory: CWE-1109 [1]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and analyze possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.6: USDT Token Contract

15/21 PeckShield Audit Report #: 2024-084

https://github.com/MonroeProtocol/contracts/commit/d03fdf4
https://github.com/MonroeProtocol/contracts/commit/b020f1c

Public

Because of that, a normal call to approve() is suggested to use the safe version, i.e., safeApprove()
, In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of transfer() as well, i.e., safeTransfer().

38 /**
39 * @dev Deprecated. This function has issues similar to the ones found in
40 * {IERC20 -approve}, and its usage is discouraged.
41 *
42 * Whenever possible , use {safeIncreaseAllowance} and
43 * {safeDecreaseAllowance} instead.
44 */
45 function safeApprove(
46 IERC20 token ,
47 address spender ,
48 uint256 value
49) internal {
50 // safeApprove should only be called when setting an initial allowance ,
51 // or when resetting it to zero. To increase and decrease it, use
52 // ’safeIncreaseAllowance ’ and ’safeDecreaseAllowance ’
53 require(
54 (value == 0) (token.allowance(address(this), spender) == 0),
55 "SafeERC20: approve from non -zero to non -zero allowance"
56);
57 _callOptionalReturn(token , abi.encodeWithSelector(token.approve.selector ,

spender , value));
58 }

Listing 3.7: SafeERC20::safeApprove()

In current implementation, if we examine the BaseVault::_distributeIncome() routine that is
designed to distribute new income. To accommodate the specific idiosyncrasy, there is a need to
use safeApprove(), instead of approve() (line 300). And it is better to be invoked twice: the first
safeApprove() resets the spending allowance and the second sets up the intended allowance.

757 function _distributeIncome(uint amount) internal returns (uint distributed) {
758 uint treasuryFee = controller.treasuryFee ();
759 uint userShare = 10_000 - treasuryFee;
760 // After fees , split the income between depositors and savings
761 uint shareSavings = userShare * ISynth(synth).getSavingsYield () / 10_000;
762 uint treasuryAmount = amount * treasuryFee / 10_000;
763 IERC20Upgradeable(collateralAsset ()).safeTransfer(controller.treasury (),

treasuryAmount);
764 amount -= treasuryAmount;
765
766 // Send its share to savings pool for Dutch auction
767 uint savingsAmount = amount * shareSavings / 10_000;
768 if(IERC20Upgradeable(collateralAsset ()).allowance(address(this), synth) <

savingsAmount) IERC20Upgradeable(collateralAsset ()).approve(synth , savingsAmount
);

16/21 PeckShield Audit Report #: 2024-084

Public

769 ISynth(synth).collectSavingsIncome(collateralAsset (), savingsAmount);
770
771 distributed = treasuryAmount + savingsAmount;
772 }

Listing 3.8: BaseVault::_distributeIncome()

Note the EmergencyPool::_deposit() routine can be similarly improved.

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve().

Status The issue has been addressed in the following commit: a1df7e3.

3.5 Trust Issue of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the Monroe protocol, there is a privileged owner account that plays a critical role in governing
and regulating the system-wide operations (e.g., parameter setting, vault adjustment, and synth
creation). Our analysis shows that the privileged account needs to be scrutinized. In the following,
we examine the privileged account and the related privileged accesses in current contracts.

72 function setTreasury(address _treasury) public onlyOwner {
73 require(_treasury != address (0), "Ctrl: Null Address");
74 treasury = _treasury;
75 }
76
77
78 /// @notice Add a new collateral vault
79 function addVault(address vault) public onlyOwner returns (uint) {
80 require(vault != address (0), "Ctrl: Invalid Vault");
81 address collateral = IBaseVault(vault).collateralAsset ();
82 address oracle = IBaseVault(vault).oracle ();
83 require(collateral != address (0) && oracle != address (0), "Ctrl: Invalid Vault");
84 require(collateralToVault[collateral] == address (0), "Ctrl: Vault Already Exists");
85
86 vaults.push(vault);
87 collateralToVault[collateral] = vault;
88 return vaults.length;
89 }

17/21 PeckShield Audit Report #: 2024-084

https://github.com/MonroeProtocol/contracts/commit/a1df7e3

Public

90 ...
91 function createSynth(bytes32 name , address oracle) public onlyOwner returns (address

newSynth) {
92 if (oracle != address (0)) require(AggregatorInterface(oracle).latestAnswer () > 0, "

Ctrl: No Such Oracle");
93 string memory _name = string(abi.encodePacked("Monroe", name));
94 string memory _symbol = string(abi.encodePacked(name , "m"));
95 newSynth = Clones.clone(synth);
96 ISynth(newSynth).initialize(_name , _symbol , oracle , lz0Endpoint , savingsPoolLogic);
97 synths.push(newSynth);
98 ISynth(newSynth).transferOwnership(msg.sender);
99 }

Listing 3.9: Privileged Operations in Controller

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is not governed by a DAO-like structure.
Note that a compromised account would allow the attacker to modify a number of sensitive system
parameters, which directly undermines the assumption of the protocol design.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed by the team. For the time being, it is planned to mitigate
with a timelock mechanism.

18/21 PeckShield Audit Report #: 2024-084

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Monroe protocol, which is
a new DeFi primitive built on realising the full potential of liquid staking tokens (LSTs) across all
EVM compatible chains. It achieves this by enabling the creation of stablecoins from LSTs in a fully
decentralized way. The protocol makes incremental innovations on the back of giants such as Liquity
, Lybra and Prisma. The envisioned outcome is that these stablecoins will be able to maintain its
peg without significant price variance in different market conditions. The current code base is well
structured and neatly organized. Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

19/21 PeckShield Audit Report #: 2024-084

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

[4] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/

data/definitions/837.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

20/21 PeckShield Audit Report #: 2024-084

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

21/21 PeckShield Audit Report #: 2024-084

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Monroe
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Revisited HealthRate Calculation in BaseVault
	Timely And Accurate Income Collection in BaseVault
	Incorrect Deposit Accounting in EmergencyPool
	Accommodation of Non-ERC20-Compliant Tokens
	Trust Issue of Admin Keys

	Conclusion
	References

