
Monroe Protocol
Smart Contract Security Audit

No. 202403131737

Mar 13th, 2024

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM



```

Monroe Protocol Security Audit

Page 2 of 22

Contents

1 Overview ........................................................................................................................................................... 6

1.1 Project Overview .................................................................................................................................... 6

1.2 Audit Overview ....................................................................................................................................... 6

1.3 Audit Method .......................................................................................................................................... 6

2 Findings ............................................................................................................................................................ 8

[Monroe Protocol-01] The getPrice function will always return 1e8 ...................................................... 9

[Monroe Protocol-02] Missing health factor check after liquidation .................................................. 10

[Monroe Protocol-03] The function lacks validation for oracleToken1 ............................................... 12

[Monroe Protocol-04] Funds locked in contract Inaccessible for withdrawal ................................... 13

[Monroe Protocol-05] DOS vulnerability in depositTime setting ......................................................... 14

3 Appendix ........................................................................................................................................................ 15

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................15

3.2 Audit Categories ................................................................................................................................. 18

3.3 Disclaimer ............................................................................................................................................ 20

3.4 About Beosin ....................................................................................................................................... 21



```

Monroe Protocol Security Audit

Page 3 of 22

Summary of Audit Result

After auditing, 2 Medium-risk and 3 Low-risk items were identified in the Monroe Protocol. Specific

audit details will be presented in the Findings section. Users should pay attention to the following

aspects when interacting with this project:

Medium
Fixed: 2

Low
Fixed: 2 Acknowledged: 1



```

Monroe Protocol Security Audit

Page 4 of 22

Business overview

1. Business overview

Monroe Protocol is a collateralized lending project primarily comprised of the following components:

EmergencyPool, SavingsPool, Synth, Vault, and Controller. Each module will be described in detail

below.

EmergencyPool: The contract inherits from ERC4626 contract to specify tokens as collateral assets,

and users can deposit them using the deposit function. EmergencyPool then pledges these assets to

the Vault for collateralization. Users who deposit assets into EmergencyPool can benefit from the

income generated by the Vault during liquidation and at the end of the income period. It's important to

note the following:

1. Users participating in EmergencyPool deposits will incur a fee of one-thousandth each time if they

performwithdrawal or transfer operations within the first day of depositing.

2. Additionally, users should be aware that because the overall assets of EmergencyPool increase the

total debt during liquidation in the Vault, there may be situations where users are unable to withdraw

funds due to debt checks if they withdraw large amounts.

SavingsPool: This contract inherits functionality from the ERC4626Upgradeable contract and uses

Synth contract tokens as assets. Users can participate in deposits using Synth tokens in this contract.

After settling Income, the Vault transfers a portion of the Income (with collateralAsset as the asset

type) to the SavingsPool to initiate an Auction. Other users can bid on these collateralAssets using

Synth contract tokens. The Synth tokens spent on purchases are included in the contract's fees. Users

who participated in deposits in the SavingsPool contract earlier can enjoy dividends accumulated from

fees one day prior. After the Auction begins, the auction price of collateralAssets will discount over

time, reaching a discount cap of 50% after 30 minutes.

Synth: The contract is deployed with a binding to the SavingsPool and can set two liquidation ratios,

hardLiquidationThreshold and liquidationThreshold. It can also synchronize the deployment of the

Vault contract with the Controller to maintain consistency. When there is a change in the debt of the

Vault contract, the Synth contract will mint or burn the corresponding token amount.

Vault: Each Vault contract is deployed with bindings to the EmergencyPool and Synth contracts. The

Vault can provide the depositAndMint function to users and the EmergencyPool for collateralization.

Users can collateralize the specified collateralAsset into the Vault to increase collateralBalances for

borrowing Synth tokens. When withdrawing, if a user has debt, the health factor must be greater than



```

Monroe Protocol Security Audit

Page 5 of 22

160 after withdrawal. In the event of a decrease in collateralAsset price, there are two ways to liquidate.

The first involves users using their own synth tokens to eliminate the debt of the liquidated party,

earning a profit of 1% to 9% in collateralAsset. The second uses EmergencyPool assets for liquidation,

where the user earns a profit of 1% in collateralAsset, with the remaining 8% going to the

EmergencyPool. Both liquidation methods incur a 1% fee sent to the treasury address. Users can also

use the rigidRedemption function to repay debt with synth tokens and withdraw collateralAsset (the

contract charges a 0.5% fee).

Controller: The owner of the Controller contract has the authority to add Vault contracts to expand the

lending market (which will later be synchronized through the Synth contract). The owner also has the

permission to modify the values of liquidationThreshold and hardLiquidationThreshold in the Synth

contract (used for Vault's liquidation checks).



```

Monroe Protocol Security Audit

Page 6 of 22

1 Overview

1.1 Project Overview

Project Name Monroe Protocol

Project Language Solidity

Platform Ethereum、Manta Pacific、Avax

Audit Scope https://github.com/Monroe Protocol/contracts/commits/main/contracts

Commit Hash

6b5b54088c3621145cf7e5a252f6efef773144ef(Initial)

38f3386abe19c0ccc45886e48dd9a5b8b2fb1e68

bfb1ae4caa5ea08b0e04b88a9e34584e07730a0f(Final)

1.2 Audit Overview

Audit work duration: Mar 8, 2024 – Mar 13, 2024

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:



```

Monroe Protocol Security Audit

Page 7 of 22

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.



```

Monroe Protocol Security Audit

Page 8 of 22

2 Findings

Index Risk description Severity level Status

Monroe Protocol-01 The getPrice function will always return
1e8

Medium Fixed

Monroe Protocol-02 Missing health factor check after
liquidation

Medium Partially Fixed

Monroe Protocol-03 The function lacks validation for
oracleToken1

Low Fixed

Monroe Protocol-04 Funds locked in contract Inaccessible
for withdrawal

Low Fixed

Monroe Protocol-05 DOS vulnerability in depositTime setting Low Acknowledged



```

Monroe Protocol Security Audit

Page 9 of 22

Finding Details:

[Monroe Protocol-01] The getPrice function will always return 1e8

Severity Level Medium

Type Business Security

Lines Synth.sol #L113-118

Description In the Synth contract, the getPrice function always returns priceX8 as 1e8.

Although AggregatorInterface(oracle).latestAnswer() is called, the returned

price is not updated to the priceX8 variable, resulting in getPrice always

returning 1e8 unchanged.

/// @notice Get target price of the synth, 1e8 in case of USD synth

/// @dev Override with a call to the oracle for a non USD synth

function getPrice() public virtual view returns (uint priceX8){

priceX8 = 1e8;

if (oracle != address(0))

AggregatorInterface(oracle).latestAnswer();

}

Recommendation
It is recommended to use `priceX8` to store the return value of

AggregatorInterface(oracle).latestAnswer().

Status Fixed.

/// @notice Get target price of the synth, 1e8 in case of USD synth

/// @dev Override with a call to the oracle for a non USD synth

function getPrice() public virtual view returns (uint priceX8){

priceX8 = 1e8;

if (oracle != address(0)) priceX8 =

uint(AggregatorInterface(oracle).latestAnswer());

}



```

Monroe Protocol Security Audit

Page 10 of 22

[Monroe Protocol-02] Missing health factor check after liquidation

Severity Level Medium

Type Business Security

Lines BaseVault.sol #L222-246

Description After the liquidate and emergencyLiquidate functions are called, there is no

check to verify if the user or emergencyPool has defaulted. In extreme cases,

this could lead to a situation where the liquidator uses a sufficient amount of

debtAmount to reduce the user's collateralBalances to a minimal value after

liquidation, yet the user still has outstanding debt. This would result in the

project losing money to pay the liquidator's reward, while the defaults of the

user and emergencyPool persist.

function liquidate(address user, uint debtAmount) external {

uint liquidatedAmount = _liquidateCollateral(user, debtAmount,

false);

// Burn debt and synth

ISynth(synth).burn(msg.sender, debtAmount);

decreaseDebt(user, debtAmount);

emit Liquidate(user, debtAmount, liquidatedAmount);

}

/// @notice Emergency liquidation only transfers debt to the emergency

pool

/// @dev In case no synth available for liquidations or gas too high

/// @dev Liquidator only gets a small fee to pay for gas

function emergencyLiquidate(address user, uint debtAmount) external

{

uint liquidatedAmount = _liquidateCollateral(user, debtAmount,

true);

// Move debt to emergency pool

decreaseDebt(user, debtAmount);

increaseDebt(emergencyPool, debtAmount);

emit EmergencyLiquidate(user, debtAmount, liquidatedAmount);

}



```

Monroe Protocol Security Audit

Page 11 of 22

Recommendation

It is recommended to add a check for the user's health factor after the liquidate

and emergencyLiquidate functions. Additionally, it is suggested to include a

check for the emergency pool's ledger after the emergencyLiquidate function.

Status Partially Fixed. According to the project team's description, don't add a check

at the end of a user liquidation because if a position is too large, it would

become impossible to liquidate it in parts.

/// @notice Emergency liquidation only transfers debt to the emergency

pool

/// @dev In case no synth available for liquidations or gas too high

/// @dev Liquidator only gets a small fee to pay for gas

function emergencyLiquidate(address user, uint debtAmount) external

{

uint liquidatedAmount = _liquidateCollateral(user, debtAmount,

true);

// Move debt to emergency pool

decreaseDebt(user, debtAmount);

increaseDebt(emergencyPool, debtAmount);

// Check health: the emergency pool HF should be more conservative

when hard liquidations happen

require(getHealthFactor(emergencyPool) >=

ISynth(synth).liquidationThreshold() + 100, "BV: Unhealthy position");

emit EmergencyLiquidate(user, debtAmount, liquidatedAmount);

}



```

Monroe Protocol Security Audit

Page 12 of 22

[Monroe Protocol-03] The function lacks validation for oracleToken1

Severity Level Low

Type Business Security

Lines OracleConvert.sol #L262-278

Description The OracleConvert contract contains two checks for the zero address of

_oracleToken0 but lacks a similar check for _oracleToken1. This omission

results in the _oracleToken1 variable being written without validation, which

impacts the return value of latestAnswer.

constructor(address _oracleToken0, address _oracleToken1) {

require(_oracleToken0 != address(0x0) && _oracleToken0 !=

address(0x0), "Invalid address");

require(AggregatorInterface(_oracleToken0).decimals() == 18 &&

AggregatorInterface(_oracleToken1).decimals() == 8, "Invalid

decimals");

oracleToken0 = AggregatorInterface(_oracleToken0);

oracleToken1 = AggregatorInterface(_oracleToken1);

}

Recommendation
It is recommended to replace one of the zero address checks for

_oracleToken0 with a check for _oracleToken1.

Status Fixed.

constructor(address _oracleToken0, address _oracleToken1) {

require(_oracleToken0 != address(0x0) && _oracleToken1 !=

address(0x0), "Invalid address");

require(AggregatorInterface(_oracleToken0).decimals() == 18 &&

AggregatorInterface(_oracleToken1).decimals() == 8, "Invalid

decimals");

oracleToken0 = AggregatorInterface(_oracleToken0);

oracleToken1 = AggregatorInterface(_oracleToken1);

}



```

Monroe Protocol Security Audit

Page 13 of 22

[Monroe Protocol-04] Funds locked in contract Inaccessible for
withdrawal

Severity Level Low

Type Business Security

Lines EmergencyPool.sol #L34-39

Description The _withdraw function in the EmergencyPool contract leaves 0.1% of the

assets (_collateralAsset) in the EmergencyPool contract upon invocation,

making them inaccessible for withdrawal.

/// @notice Withdraw assets from collateral vault before transfer and

apply 0.1% sniping penalty

function _withdraw(address caller, address receiver, address owner,

uint256 assets, uint256 shares) internal override {

IBaseVault(collateralVault).withdrawAndBurn(assets, 0);

if (block.timestamp < depositTime[owner] + 1 days) assets = assets

* 999 / 1000;

super._withdraw(caller, receiver, owner, assets, shares);

}

Recommendation It is recommended to add a fee withdrawal function.

Status Fixed.

/// @notice Withdraw assets from collateral vault before transfer and

apply 0.1% sniping penalty

function _withdraw(address caller, address receiver, address owner,

uint256 assets, uint256 shares) internal override {

if (block.timestamp < depositTime[owner] + 1 days) assets = assets

* 999 / 1000;

IBaseVault(collateralVault).withdrawAndBurn(assets, 0);

super._withdraw(caller, receiver, owner, assets, shares);

}



```

Monroe Protocol Security Audit

Page 14 of 22

[Monroe Protocol-05] DOS vulnerability in depositTime setting

Severity Level Low

Type Business Security

Lines EmergencyPool.sol #L42-49

Description In the _deposit function of the EmergencyPool contract, the depositTime

parameter is set to receiver, allowing for deposits of negligible amounts to any

receiver address. Consequently, when transactions such as transfers and

withdrawals are made from the receiver address, they will be subject to a 0.1%

fee.

/// @notice Forward assets to collateral vault after deposit

function _deposit(address caller, address receiver, uint256 assets,

uint256 shares) internal override {

// prevent depositTime griefing by only authorizing deposit for

oneself

require(caller == receiver, "SP: Caller is not receiver");

super._deposit(caller, receiver, assets, shares);

depositTime[receiver] = block.timestamp;

IERC20(asset()).safeApprove(collateralVault, assets);

IBaseVault(collateralVault).depositAndMint(assets, 0);

}

Recommendation
It is recommended to add a minimum value for collateral in the _deposit

function to preventmaliciousmanipulation of user deposit times.

Status Acknowledged.



```

Monroe Protocol Security Audit

Page 15 of 22

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

Monroe Protocol Security Audit

Page 16 of 22

3.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

3.1.4 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.



```

Monroe Protocol Security Audit

Page 17 of 22

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

Monroe Protocol Security Audit

Page 18 of 22

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions



```

Monroe Protocol Security Audit

Page 19 of 22

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.

 General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.



```

Monroe Protocol Security Audit

Page 20 of 22

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.



```

Monroe Protocol Security Audit

Page 21 of 22

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[Monroe Protocol-01] The getPrice function will al
	[Monroe Protocol-02] Missing health factor check a
	[Monroe Protocol-03] The function lacks validation
	[Monroe Protocol-04] Funds locked in contract Inac
	[Monroe Protocol-05] DOS vulnerability in depositT

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin


